

Honey Bee Apiaries on National Forests in Utah

Vincent Tepedino¹

April 16, 2018

Western bumblebee (*Bombus occidentalis*),
a resident and current candidate for
listing under the Endangered Species Act

A recent application by a private beekeeper to the U. S. Forest Service proposes pasturing enormous numbers of honey bees in apiaries on four of Utah's National Forests - The Manti-La Sal, the Fishlake, the Uinta-Wasatch-Cache and the Dixie - for four-five months. This is a very bad idea for several reasons:

1) **Utah is home to more bee species than any other state in the union save California and perhaps Arizona and Nevada.** There are 1,128 recorded native bee species in Utah, most of which are solitary rather than social. For comparison, Grand Staircase Escalante National Monument (GSENM), which is near to two of these forests, has >650 documented bee species on about 1.9 million acres (Messinger et al., paper submitted to PEERJ, 2018) not much less than the 750 species found east of the Mississippi. The three most southern of these National Forests total about 4.9 million acres and are likely to have at least as many species as does GSENM.

2) **These bee species have evolved as pollinators of our diverse native flora** and are instrumental in maintaining the integrity of our native ecosystems.

They are essential for the production of fruit and seeds for wildlife and make possible future generations of the plants which feed wildlife and from which our ecosystems and watersheds arise. Many are extremely specialized in the flower species they can visit for pollen and are therefore more vulnerable to competition from honey bees because of their small population sizes and likely genetic impoverishment (Zayed et al. 2005).

3) **Honey bees, though invaluable as crop pollinators, are not native** to the Americas and have evolved social and foraging behaviors which make them fearsome competitors for the pollen and nectar all bees require as food. The honey bee behavior of recruiting nestmates to rich sources of pollen and nectar enables them to outcompete and displace many species of native bees – already

¹ **Vincent Tepedino** is a retired bee biologist with over 40 years research experience and >140 scientific publications on bee biology and pollination, particularly of native bees and rare plants in the western U.S. In retirement he has focused his attention on conservation issues

under pressure from the removal of forage over much of these forests by livestock grazing - and will make it impossible for them to reproduce at replacement levels. Persistent pasturing of honey bees on native wildlands will greatly reduce populations of many native bee species and eventually push them towards extinction on these forests.

4) **Native bees do a better job of pollinating the native plant species** they have evolved with, while honey bees vary in their pollination effectiveness: they will pollinate some native plant species effectively but not others;. Replacement of natives by honey bees will thus result in a change in the mix of seeds produced by native plants with cascading effects throughout the community; if such honey bee pasturing persists, the species composition of forbs and shrubs in the forests will change over time in unpredictable ways. We have no way of knowing if this alteration will be positive or negative.

5) **A large land area will be required to feed enormous numbers of honey bees** for 4-5 months, as shown in several studies by honey bee ecologists. Smart et al., (2016) estimated that 80 acres of land is necessary to support a hive of bees for five months. During this period the honey bee foragers in one hive would remove enough pollen to have reared approximately 150,000 native bees (Cane & Tepedino 2017). Typical hives coming out of west coast orchards in late spring/early summer are grouped, ill-advisedly but for logistic purposes, in apiaries of 100 hives. Conservative estimates of the amount of pollen removed over 5 months by the bees in one apiary is thus equivalent to between 10 and 15 MILLION native bees. Such an apiary would require about 8,000 acres of forest service land. Ten such apiaries would require 80,000 acres of forage and would remove enough pollen for between 100 and 150 MILLION natives and so on. Seeley (2009) and Roubik (1989) found that honey bees will typically fly a median distance of 5-6 km and, under certain stressful circumstances (high densities of bees to flowers), as far as 12-13 km for forage. It is unquestionable that pasturing large numbers of honey bees on these forests would have devastating effects on the native bee fauna.

6) **Honey bees are currently under pressure from pesticides and various disease agents** which have reduced the number of hives nationwide. Although research on disease spillover between domesticated honey bees and native bees has only begun recently, already numerous studies have uncovered disturbing connections (Tehel et al. 2016). For example, it has been established that honey bees in almond orchards carry a host of pathogens (Cavigli et al. 2016; Gisder and Genersch 2017). Even more important, Singh et al. (2010) have shown that Israeli Acute Paralysis Virus (IAPV) is transferred at flowers between honey bees and bumblebees. Several studies have shown that DWV (Deformed Wing Virus) is transferred from honey bees to bumblebees and that it is pathogenic (Fürst et al. 2014; McMahon et al. 2015). There is additional evidence that DWV has infected other non-honey bee species including the bee *Ceratina smaragdula* in Hawaii (Santamaria et al. 2018); that DWV and Black Queen Cell Virus (BQCV) have been transmitted from honey bees to bees in the genera *Andrena*, *Anthophora*, *Bombus*, *Osmia*, and *Xylocopa* in Europe (Radzevičiūtė et al. 2017) and also that these viruses replicate in those bee genera. Other studies have demonstrated that several viruses are shared by honey bees and native bees though the direction of transmission or whether the viruses are pathogenic in natives remains to be elucidated (e.g., Ravoet et al. 2014; Alvarez et al. 2017). Finally, there is also evidence that some viruses that are highly pathogenic to honey bees (Acute Bee Paralysis Virus) may spill over from native bees (Singh et al. 2010). In view of these facts, we must ask: is it prudent to contaminate our native bee fauna, already under intense pressure from a variety of stressors, with honey bee viruses and conversely, to possibly introduce new viruses from native bees to an already beleaguered honey bee pollination force?

7) These four forests are all within the historic distribution of the western bumblebee, *Bombus occidentalis*, a declining species which is currently being considered by the U. S. Fish & Wildlife Service for listing as threatened or endangered under the U. S. Endangered Species Act. There are recent records of its occurrence either on these forests or nearby. And, lest we forget, there is already evidence that the honey bee passes the debilitating deformed wing virus to bumblebees.

8) The positive experience of many recreationists will directly clash with large numbers of honey bee hives on National Forests. Use of all national forests by recreationists had risen to about 148 million visits in 2016

(<https://www.fs.fed.us/recreation/programs/nvum/pdf/5082016NationalSummaryReport062217.pdf>); FS Region 4 alone estimates 16.5 million visits. Many of these visitors will feel uncomfortable or fearful in the presence of honey bees (Schmidt 1986), and roughly 5% of visitors will be allergic to honey bee venom (Golden 2013) which is twice as painful as the venom of most native bees (Schmidt 2016).

9) Finally, **there are alternative programs to help provide forage for honey bees to produce honey and to regain strength** when they are not pollinating crops. The CRP, EQIP, WHiP and CSP programs of the USDA plus numerous other directives to numerous government agencies put forth in a Task Force formed by the Obama White House in 2014-2015 need to be encouraged, reinvigorated and improved. We should support the honey bee industry but not at the expense of our native species and their contribution to the integrity of our ecosystems.

.

References

*Note: The most important papers are denoted by two asterisks (**)*

General

**Colla, S. R., & MacIvor, J. S. (2017). Questioning public perception, conservation policy, and recovery actions for honeybees in North America. *Conservation Biology*, 31(5), 1202-1204.

Dicks, L. V., Baude, M., Roberts, S. P., Phillips, J., Green, M., & Carvell, C. (2015). How much flower-rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge. *Ecological Entomology*, 40(S1), 22-35.

Dicks, L. V., Viana, B., Bommarco, R., Brosi, B., del Coro Arizmendi, M., Cunningham, S. A., ... & Taki, H. (2016). Ten policies for pollinators. *Science*, 354(6315), 975-976.

**Geldmann, J., & González-Varo, J. P. (2018). Conserving honey bees does not help wildlife. *Science*, 359(6374), 392-393.

Inouye, D., Droege, S., & Mawdsley, J. (2017). Words alone will not protect pollinators. *Science*, 355(6323), 357-357.

Kenis, M., Auger-Rozenberg, M. A., Roques, A., Timms, L., Péré, C., Cock, M. J., & Lopez-Vaamonde, C. (2009). Ecological effects of invasive alien insects. *Biological Invasions*, 11(1), 21-45.

**Morales, Carolina L., Agustín Sáez, Lucas A. Garibaldi, and Marcelo A. Aizen. "Disruption of pollination services by invasive pollinator species." In *Impact of Biological Invasions on Ecosystem Services*, pp. 203-220. Springer, Cham, 2017.

National Research Council. (2007). *Status of Pollinators in North America*. National Academies Press.

Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., Breeze, T. D., & Vanbergen, A. J. (2016). Safeguarding pollinators and their values to human well-being. *Nature*, 540(7632), 220.

**Roulston, T. A. H., & Goodell, K. (2011). The role of resources and risks in regulating wild bee populations. *Annual Review of Entomology*, 56, 293-312.

**Smart, M. D., Pettis, J. S., Euliss, N., & Spivak, M. S. (2016). Land use in the Northern Great Plains region of the US influences the survival and productivity of honey bee colonies. *Agriculture, Ecosystems & Environment*, 230, 139-149.

Vilsack, T., & McCarthy, G. (2015). National strategy to promote the health of honey bees and other pollinators. *Report Issued by the White House the Pollinator Health Task Force on*, 19.

Diseases

Alvarez, L. J., Reynaldi, F. J., Ramello, P. J., Garcia, M. L. G., Sguazza, G. H., Abrahamovich, A. H., & Lucia, M. (2018). Detection of honey bee viruses in Argentinian stingless bees (Hymenoptera: Apidae). *Insectes Sociaux*, 65(1), 191-197.

Brosi, B. J., Delaplane, K. S., Boots, M., & de Roode, J. C. (2017). Ecological and evolutionary approaches to managing honeybee disease. *Nature Ecology & Evolution*, 1(9), 1250.

Cameron, S. A., Lim, H. C., Lozier, J. D., Duennes, M. A., & Thorp, R. (2016). Test of the invasive pathogen hypothesis of bumble bee decline in North America. *Proceedings of the National Academy of Sciences*, 113(16), 4386-4391.

**Cavigli, I., Daughenbaugh, K. F., Martin, M., Lerch, M., Banner, K., Garcia, E., ... & Flenniken, M. L. (2016). Pathogen prevalence and abundance in honey bee colonies involved in almond pollination. *Apidologie*, 47(2), 251-266.

Dolezal, A. G., Hendrix, S. D., Scavo, N. A., Carrillo-Tripp, J., Harris, M. A., Wheelock, M. J., ... & Toth, A. L. (2016). Honey bee viruses in wild bees: viral prevalence, loads, and experimental inoculation. *PLoS One*, 11(11), e0166190.

Faillace, C. A., Lorusso, N. S., & Duffy, S. (2017). Overlooking the smallest matter: viruses impact biological invasions. *Ecology Letters*, 20(4), 524-538.

**Fürst MA, McMahon DP, Osborne JL, Paxton RJ, Brown MJF. Disease associations between honeybees and bumblebees as a threat to wild pollinators. *Nature*. 2014;506(7488):364-366. doi:10.1038/nature12977.

Gisder, S., & Genersch, E. (2017). Viruses of commercialized insect pollinators. *Journal of Invertebrate Pathology*, 147, 51-59.

**Goulson, D., William O.H. Hughes. 2015. Mitigating the anthropogenic spread of bee parasites to protect wild pollinators, *Biological Conservation*, 191, 10-19, <https://doi.org/10.1016/j.biocon.2015.06.023>.

Graystock P, Goulson D, Hughes WOH. (2014) The relationship between managed bees and the prevalence of parasites in bumblebees. *PeerJ* 2:e522<https://doi.org/10.7717/peerj.522>

**Graystock, P., Dave Goulson, William O. H. Hughes. 2015. Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. *Proc. R. Soc. B* 2015 282 20151371; DOI: 10.1098/rspb.2015.1371.

Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D., & Hughes, W. O. (2016). Do managed bees drive parasite spread and emergence in wild bees?. *International Journal for Parasitology: Parasites and Wildlife*, 5(1), 64-75.

Levin, S., Galbraith, D., Sela, N., Erez, T., Grozinger, C., & Chejanovsky, N. (2017). Presence of *Apis rhabdovirus-1* in populations of pollinators and their parasites from two continents. *Frontiers in Microbiology*, 8, 2482.

**Manley, R., Boots, M., Wilfert, L. (2015), REVIEW: Emerging viral disease risk to pollinating insects: ecological, evolutionary and anthropogenic factors. *Journal of Applied Ecology*, 52: 331–340. doi: 10.1111/1365-2664.12385

**McMahon, D. P., Fürst, M. A., Caspar, J., Theodorou, P., Brown, M. J. F., Paxton, R. J. (2015), A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. *Journal of Animal Ecology*, 84: 615–624. doi: 10.1111/1365-2656.12345

McMenamin, A. J., & Flenniken, M. L. (2018). Recently identified bee viruses and their impact on bee pollinators. *Current Opinion in Insect Science*.

Melathopoulos, A., Ovinge, L., Veiga, P. W., Castillo, C., Ostermann, D., & Hoover, S. (2017). Viruses of managed alfalfa leafcutting bees (*Megachile rotundata* Fabricus) and honey bees (*Apis mellifera* L.) in Western Canada: incidence, impacts, and prospects of cross-species viral transmission. *Journal of Invertebrate Pathology*, 146, 24-30.

Otterstatter, M. C., & Thomson, J. D. (2008). Does pathogen spillover from commercially reared bumble bees threaten wild pollinators?. *PLoS One*, 3(7), e2771.

Parmentier, L., Smagghe, G., de Graaf, D. C., & Meeus, I. (2016). Varroa destructor Macula-like virus, Lake Sinai virus and other new RNA viruses in wild bumblebee hosts (*Bombus pascuorum*, *Bombus lapidarius* and *Bombus pratorum*). *Journal of Invertebrate Pathology*, 134, 6-11.

Peng, W., Li, J., Boncristiani, H., Strange, J. P., Hamilton, M., & Chen, Y. (2011). Host range expansion of honey bee black queen cell virus in the bumble bee, *Bombus huntii*. *Apidologie*, 42(5), 650-658.

Radzevičiūtė, R., Theodorou, P., Husemann, M., Japoshvili, G., Kirkpatadze, G., Zhusupbaeva, A., & Paxton, R. J. (2017). Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan. *Journal of invertebrate pathology*, 146, 14-23.

Ravoet, J. ^aLina De Smet^a, Ivan Meeus, Guy Smagghe, and Dirk C.de Graaf^a. 2014. Widespread occurrence of honey bee pathogens in solitary bees. *Journal of Invertebrate Pathology* 122:155-58.

Santamaria, J., Villalobos, E. M., Brettell, L. E., Nikaido, S., Graham, J. R., & Martin, S. (2017). Evidence of Varroa-mediated deformed wing virus spillover in Hawaii. *Journal of invertebrate pathology*.

**Tehel, A., Brown, M. J., & Paxton, R. J. (2016). Impact of managed honey bee viruses on wild bees. *Current opinion in virology*, 19, 16-22.

**Wilfert, L., Long, G., Leggett, H. C., Schmid-Hempel, P., Butlin, R., Martin, S. J. M., & Boots, M. (2016). Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. *Science*, 351(6273), 594-597.

Competition with Native Bees

**Cane, J. H., & Tepedino, V. J. (2017). Gauging the effect of honey bee pollen collection on native bee communities. *Conservation Letters*, 10(2), 205-210.

Dupont, Y. L., Hansen, D. M., Valido, A., & Olesen, J. M. (2004). Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. *Biological Conservation*, 118(3), 301-311.

Elbgami, T., Kunin, W. E., Hughes, W. O., & Biesmeijer, J. C. (2014). The effect of proximity to a honeybee apiary on bumblebee colony fitness, development, and performance. *Apidologie*, 45(4), 504-513.

Freitas, B. M., Imperatriz-Fonseca, V. L., Medina, L. M., Kleinert, A. D. M. P., Galetto, L., Nates-Parra, G., & Quezada-Euán, J. J. G. (2009). Diversity, threats and conservation of native bees in the Neotropics. *Apidologie*, 40(3), 332-346.

**Geslin, B., Gauzens, B., Baude, M., Dajoz, I., Fontaine, C., Henry, M., ... & Vereecken, N. J. (2017). Massively introduced managed species and their consequences for plant-pollinator interactions. In *Advances in Ecological Research* (Vol. 57, pp. 147-199). Academic Press. (review article)

González-Varo, J. P., & Vilà, M. (2017). Spillover of managed honeybees from mass-flowering crops into natural habitats. *Biological Conservation*, 212, 376-382.

Goulson, D., Stout, J. C., & Kells, A. R. (2002). Do exotic bumblebees and honeybees compete with native flower-visiting insects in Tasmania?. *Journal of Insect Conservation*, 6(3), 179-189.

Herbertsson, L., Lindström, S. A., Rundlöf, M., Bommarco, R., & Smith, H. G. (2016). Competition between managed honeybees and wild bumblebees depends on landscape context. *Basic and applied ecology*, 17(7), 609-616.

Hudewenz, A., & Klein, A. M. (2015). Red mason bees cannot compete with honey bees for floral resources in a cage experiment. *Ecology and evolution*, 5(21), 5049-5056.

Kato, M., Shibata, A., Yasui, T., & Nagamasu, H. (1999). Impact of introduced honeybees, *Apis mellifera*, upon native bee communities in the Bonin (Ogasawara) Islands. *Researches on Population Ecology*, 41(2), 217-228.

Kato, M., & Kawakita, A. (2004). Plant-pollinator interactions in New Caledonia influenced by introduced honey bees. *American Journal of Botany*, 91(11), 1814-1827.

Lindström, S. A., Herbertsson, L., Rundlöf, M., Bommarco, R., & Smith, H. G. (2016, November). Experimental evidence that honeybees depress wild insect densities in a flowering crop. In *Proc. R. Soc. B* (Vol. 283, No. 1843, p. 20161641). The Royal Society.

**Mallinger, R. E., Gaines-Day, H. R., & Gratton, C. (2017). Do managed bees have negative effects on wild bees? A systematic review of the literature. *PLoS one*, 12(12), e0189268. (review article)

Montero-Castaño, A., & Vila, M. (2012). Impact of landscape alteration and invasions on pollinators: a meta-analysis. *Journal of Ecology*, 100(4), 884-893.

Norfolk, O., Gilbert, F., & Eichhorn, M. P. (2017). Alien honeybees increase pollination risks for range-restricted plants. *Diversity and Distributions*.

Packer, L., Zayed, A., Grixiti, J. C., Ruz, L., Owen, R. E., Vivallo, F., & Toro, H. (2005). Conservation genetics of potentially endangered mutualisms: reduced levels of genetic variation in specialist versus generalist bees. *Conservation Biology*, 19(1), 195-202.

Portman, Z. M., Tepedino, V. J., Tripodi, A. D., Szalanski, A. L., & Durham, S. L. Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees. *Biological Invasions*, 1-14.

Roubik, D. W. (1989). *Ecology and Natural History of Tropical Bees*. Cambridge Univ. Press, New York

**Seeley, T. D. (2009). *The Wisdom of The Hive: the Social Physiology of Honey Bee Colonies*. Harvard University Press, Cambridge Mass.

Shavit, O., Dafni, A., & Ne'eman, G. (2009). Competition between honeybees (*Apis mellifera*) and native solitary bees in the Mediterranean region of Israel—Implications for conservation. *Israel Journal of Plant Sciences*, 57(3), 171-183.

**Thomson, D. (2004). Competitive interactions between the invasive European honey bee and native bumble bees. *Ecology*, 85(2), 458-470.

Thomson, D. M. (2006). Detecting the effects of introduced species: a case study of competition between *Apis* and *Bombus*. *Oikos*, 114(3), 407-418.

Thomson, D. M. (2016). Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. *Ecology Letters*, 19(10), 1247-1255.

**Torné-Noguera, A., Rodrigo, A., Osorio, S., & Bosch, J. (2016). Collateral effects of beekeeping: impacts on pollen-nectar resources and wild bee communities. *Basic and Applied Ecology*, 17(3), 199-209.

Changes in Plant Species Composition (includes weeds)

**Aizen, M. A., Morales, C. L., Vázquez, D. P., Garibaldi, L. A., Sáez, A., & Harder, L. D. (2014). When mutualism goes bad: density-dependent impacts of introduced bees on plant reproduction. *New Phytologist*, 204(2), 322-328.

**Aslan, C. E., Liang, C. T., Galindo, B., Kimberly, H., & Topete, W. (2016). The role of honey bees as pollinators in natural areas. *Natural areas journal*, 36(4), 478-488.

**Barthell, J. F., Randall, J. M., Thorp, R. W., & Wenner, A. M. (2001). Promotion of seed set in yellow star-thistle by honey bees: evidence of an invasive mutualism. *Ecological Applications*, 11(6), 1870-1883.

Bretagnolle, V., & Gaba, S. (2015). Weeds for bees? A review. *Agronomy for Sustainable Development*, 35(3), 891-909.

**Dohzono, I., & Yokoyama, J. (2010). Impacts of alien bees on native plant-pollinator relationships: A review with special emphasis on plant reproduction. *Applied Entomology and Zoology*, 45(1), 37-47.

**Goulson, D. (2003). Effects of introduced bees on native ecosystems. *Annual Review of Ecology, Evolution, and Systematics*, 34(1), 1-26.

Hanley, M. E., & Goulson, D. (2003). Introduced weeds pollinated by introduced bees: Cause or effect?. *Weed Biology and Management*, 3(4), 204-212.

Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018, January). The worldwide importance of honey bees as pollinators in natural habitats. In *Proc. R. Soc. B* (Vol. 285, No. 1870, p. 20172140). The Royal Society of London..

**Magrach, A., González-Varo, J. P., Boiffier, M., Vilà, M., & Bartomeus, I. (2017). Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. *Nature ecology & Evolution*, 1(9), 1299.

Requier, F., Odoux, J. F., Tamic, T., Moreau, N., Henry, M., Decourtey, A., & Bretagnolle, V. (2015). Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. *Ecological Applications*, 25(4), 881-890.

Rollin, O., Benelli, G., Benvenuti, S., Decourtey, A., Wratten, S. D., Canale, A., & Desneux, N. (2016). Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. *Agronomy for Sustainable Development*, 36(1), 8.

**Schweiger, O., Biesmeijer, J. C., Bommarco, R., Hickler, T., Hulme, P. E., Klotz, S., ... & Petanidou, T. (2010). Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. *Biological Reviews*, 85(4), 777-795.

Traveset, A., & Richardson, D. M. (2006). Biological invasions as disruptors of plant reproductive mutualisms. *Trends in Ecology & Evolution*, 21(4), 208-216.

Western Bumblebee (*Bombus occidentalis*)

Rao, S., & Stephen, W. P. (2007). *Bombus* (*Bombus*) *occidentalis* (Hymenoptera: Apiformes): in decline or recovery. *The Pan-Pacific Entomologist*, 83(4), 360-362.

Rao, S., Stephen, W. P., Kimoto, C., & DeBano, S. J. (2011). The status of the 'red-listed' *Bombus occidentalis* (Hymenoptera: Apiformes) in northeastern Oregon. *Northwest Science*, 85(1), 64-67.

Rhoades, P. R., Koch, J. B., Waits, L. P., Strange, J. P., & Eigenbrode, S. D. (2016). Evidence for *Bombus occidentalis* (Hymenoptera: Apidae) populations in the Olympic Peninsula, the Palouse Prairie, and forests of northern Idaho. *Journal of Insect Science*, 16(1).

Thorp, R. W. 2003. Bumble bees (Hymenoptera:Apidae): Commercial use and environmental concerns. 21–40. In: Strickler, K. and J. H. Cane, editors. For Nonnative Crops, Whence Pollinators of the Future. Thomas Say Publications in Entomology: Proceedings. Entomological Society of America. Lanham, MD.

Thorp, R. W. and M. D. Shepherd. 2005. Species profile: Subgenus *Bombus*. In: Shepherd, M. D., M. Vaughan, and S. H. Black, editors. Red List of Pollinator Insects of North America. CD-ROM Version 1, Xerces Society for Invertebrate Conservation. Portland, OR.

Recreation

Golden, D. B. (2013). Advances in diagnosis and management of insect sting allergy. *Annals of Allergy, Asthma & Immunology*, 111(2), 84-89.

Schmidt, J. O. (1986). Allergy to Hymenoptera venoms. In *Venoms of the Hymenoptera* (p. 509). Academic Press London.

Schmidt, J. (2016). *The Sting of the Wild*. Baltimore, Maryland: Johns Hopkins University Press

Note: Mary O'Brien of Grand Canyon Trust (maryobrien10@gmail.com) can provide a copy of most of these documents upon request.