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Over 70% of Agave species, (159 of 206) are found in Mexico and are well adapted to
survive under hot, arid conditions, often in marginal terrain, due to a unique combination
of morphological and physiological attributes. In the pre-Columbian era agaves were
also key to human adaptation to desert terrain. In contrast to other species such
as cacti or resurrection plants, Agaves store carbohydrates in the form of fructan
polymers rather than starch or sucrose, however, properties specific to fructans such
as a strong hydration shell, the ability to be transported through phloem, variable
composition throughout the Agave life-cycle and accumulation in succulent tissues and
flowers suggest a potential for multiple functional roles. This mini-review summarizes
current knowledge of molecular and biochemical aspects of fructan metabolism in
Agave species.
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INTRODUCTION

Fructan polymers, are synthesized by some bacteria and fungi and an estimated 15% of
angiosperms including both monocotyledons and dicotyledons from different genera (Hendry,
1993; Figure 1). In plants, fructan polymers are described based on their structure and complexity
(Versluys et al., 2018). Although neo type fructans have only been described in monocotyledons,
no strong correlation exists between the type of fructan polymers and the genus or species in which
they occur, supporting independent evolution of fructan metabolism.

Fructans are water soluble, flexible fructose based polymers synthesized from sucrose and
accumulating in the vacuole. They can act as a long-term reserve carbohydrate in some plant
species, alone or in combination with starch.

Fructans are an alternative to starch for long-term carbohydrate storage. Starch, composed of
linear amylose or branched amylopectin glucose (hexose) polymers, accumulates in chloroplasts,
whereas fructans produced by adding fructose monomers to sucrose are stored in vacuoles.
Fructans are structurally flexible, highly soluble, accumulate to high levels, and have the ability
to associate with cell membranes (Van den Ende, 2013). These properties are intrinsic to their
roles in response to stress (Versluys et al., 2018) or developmental signals (Bolouri Moghaddam
and Van den Ende, 2013). Fructans are exploited commercially as a replacement for sugar or fats,
as fiber or prebiotics (Vijn and Smeekens, 1999) and have useful properties for drug delivery and
cryoprotection (Audouy et al., 2011; Gupta et al., 2019).

Agaves evolved during the Miocene period and synthesis and storage of fructans was an
important factor in adaptation to drier environments (Arakaki et al., 2011). Agave species range
from the Canadian/United States border to the Northern region of South America (Gentry, 1982;
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FIGURE 1 | Schematic representation of plant fructans, their structural diversity and the enzymes involved in their metabolism. (A) linear inulin and (B) levan,
(C) branched graminan, (D) neo-inulin, (E) neo-levan, and (F) highly branched agavin. Gray-glucose, green-fructose, gray shadow-sucrose moiety. Blue
rectangles-enzymes:1-SST-sucrose:sucrose1-fructosyltransferase, 1-FFT-fructan:fructan1-fructosyltransferase, 6-SFT-sucrose:fructan 6-fructosyltransferase,
6G-FFT-fructan:fructan 6Gfructosyltransferase, FEH-fructan exohydrolase. Red text-dicotyledons, Black text-monocotyledons.

Garcia, 2007). Whereas some species such as A. deserti or
A. americana are adapted to wide temperature ranges others such
as A. tequilana will not thrive at temperatures below −4◦C or
above 36◦C (Nobel et al., 1998), demonstrating that tolerance
mechanisms are complex.

Artificial selection of Agaves mainly took place in Mexico
where 58% of species are endemic (Gentry, 1982; Garcia, 2007).
Pre-Columbian cultures exploited these plants for food, fiber,
construction and beverages and they were essential elements
of nomadic life styles. Agave fructans provide the raw material
for production of tequila and mescal, are being developed as
components of treatments for diabetes and obesity (Franco-
Robles et al., 2019) and as a resource for low-cost, carbon neutral
production of bioenergy (Niechayev et al., 2019).

Agave FRUCTANS

The presence of fructans in Agave species was first recorded
by Ekstrand and Johanson in 1888 as cited by Suzuki and
Chatterton, 1993. In common with other members of the
order Asparagales, Agave species synthesis inulin and neo
series fructan polymers (Figure 1) and a new class of
neofructans (subsequently known as “agavins”) was first
identified in A. tequilana (Mancilla-Margalli and Lopez,
2006). Agavins are the most complex plant fructans described
to date, comprising neoseries type fructans elongated at
all three possible linkages (Figure 1). The composition
of the fructan pool in A. tequilana varies as plants age,

with agavins increasing in abundance in relation to inulins
(Mellado-Mojica and Lopez, 2012).

In Agave leaves starch accumulation is largely limited to
stomatal guard cells with minimal accumulation in other leaf
cells (Zavala-Garcia et al., 2018). The presence of oligofructans
containing 3–5 fructan residues (3–5 degrees of polymerization,
D.P.) in Agave leaves indicates that sucrose produced by
photosynthesis is metabolized to produce fructans rather
than starch (Wang and Nobel, 1998) have shown that
these oligofructans can accumulate in vascular tissue and
are transported through the phloem. Although the transport
mechanism is unknown, it is most plausibly by polymer trapping
(Zhang and Turgeon, 2018). However, the presence of fructans in
the extracellular space (apoplast) (Raveh et al., 1998) and putative
roles in defense, signaling and membrane protection indicate that
an apoplastic mechanism cannot be ruled out.

Oligofructans and/or sucrose transported from leaves are
either metabolized to starch that accumulates in the peripheral
meristem region between the leaf base and the stem (Zavala-
Garcia et al., 2018; Figure 2) or converted to complex
fructans for long-term storage in the vacuoles of stem tissue
(Mellado-Mojica et al., 2017).

FRUCTAN METABOLISM IN Agave
SPECIES

To synthesize agavins and inulins 4 fructosyltransferase (FT)
activities (1-SST, 1-FFT, 6-SFT, and 6G-FFT, Figure 1) are
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FIGURE 2 | Fructan and/or sucrose mobility throughout an Agave plant. Blue
arrows indicate fructan movement, green circle indicates the starch layer and
peripheral meristem. Red asterisks indicate tissues where agavins are
synthesized. SAM-shoot apical meristem. PM-Peripheral meristem.

needed whereas degradation of fructans is carried out by
fructan exohydrolases (FEH) that may be specific for β

1→2 or β 1→6 linkages or act on both. FT and FEH in
common with vacuolar and cell wall invertases are members
of Plant Glycoside Hydrolase Family 32 (PGHF32). The first
Agave FT to be characterized was a 1-SST from A. tequilana
(Avila-Fernandez et al., 2007) and by RNAseq 15 members
of PGHF32 from A. tequilana, A. deserti, and A. victoriae-
reginae were later identified (Avila De Dios et al., 2015).
Sequence based predictions of enzyme activities have also been
confirmed for some A. tequilana enzymes using the P. pastoris

system (Cortes-Romero et al., 2012). cDNAs encoding 6-
SFT or 1-FFT type enzymes have not yet been conclusively
identified perhaps due to low or tissue specific expression.
Alternatively, some Agave FT enzymes may have multiple
activities as reported for a 6G-FFT from onion (Weyens et al.,
2004). In silico modeling supports this hypothesis since (Huang
et al., 2018) have shown that the predicted structure of an
A. tequilana 6G-FFT differs from those identified in A. deserti and
A. sisalana.

In silico expression patterns for genes encoding invertases
and FEH across three different Agave species (A. tequilana,
A. striata and A. victoriae-reginae) are consistent, whereas FT
expression is highly variable (Avila De Dios et al., 2015). For
example isoforms encoding 1-SST enzymes from A. tequilana
and A. striata showed similar tissue specific patterns whereas
those identified for A. victoriae-reginae varied widely and 6G-
FFT encoding genes of A. victoriae-reginae and A. striata are
strongly expressed in vegetative tissue in contrast to A. tequilana.
Expression patterns for all three Agave species showed high levels
of expression for both FT and FEH in floral tissue (Avila De Dios
et al., 2015) suggesting that fructans are not only being degraded
but are also being synthesized in these organs.

Transcriptome analysis of the vegetative to reproductive
transition in A. tequilana revealed no differential expression
for starch metabolism related genes (Zavala-Garcia et al., 2018)
whereas fructan related genes are highly expressed in SAM tissue
in comparison to leaf tissue. In particular a 6G-FFT isoform
is specifically and strongly expressed at the initial stage of the
reproductive phase (Avila De Dios et al., 2019).

BIOLOGICAL FUNCTIONS OF Agave
FRUCTANS

In Agave species fructans provide a source of carbohydrates
for the vegetative to reproductive transition. Inflorescences can
grow at a rate of 4–10 cms per day to reach 10 m or more
(Valenzuela, 2003) and produce thousands of flowers, capsules,
and seeds (Escobar-Guzman et al., 2008). Under cultivation,
inflorescences are removed to avoid depletion of fructan reserves.
Delgado Sandoval et al., 2012, showed that as the reproductive
stage initiates, development of photosynthetically active leaves
is suppressed and the SAM differentiates. Genes encoding FEH
and invertases increase their expression during bolting (Avila De
Dios et al., 2019) and leaves and stems senesce indicating that
carbohydrate reserves are being harnessed for flowering.

Fructan reserves are also exploited during asexual
reproduction since suckers produced from rhizomes or
bulbils produced on inflorescences (Figure 2) also benefit
from carbohydrates stored in the mother plant and may not
survive if detached too early (Szarek et al., 1996). To accomplish
these functions fructans must be mobilized over significant
distances. Active fructan metabolism in floral tissue suggests
carbohydrate availability could be limited by the rate of turnover
or transport. Fructans may act as precursors to nectar production
in floral tissue since A. palmeri produces 74 mg of nectar/flower
composed mainly of glucose and fructose (Riffell et al., 2008).
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Alternatively fructans may be involved in generating osmolarity
fluxes that lead to flower opening as described for Campanula
rapunculoides (Vergauwen et al., 2000).

Agaves are perennial, monocarpic species with life cycles of
5 to over 50 years. They remain unresponsive to cues such as
photoperiod or temperature, which induce flowering in annual
or polycarpic species and probably respond to age-determined
signals involving carbohydrate regulation. It could be speculated
that accumulation of specific agavins produced by the 6G-FFT
isoform described above may serve as age related molecular
signals (Salinas et al., 2016) have also shown that neofructan
levels increase in drought stressed A. barbadensis suggesting that
neofructans play important functional roles.

The natural habitat of Agave species is in marginal desert
terrain. Localization of fructans in hydrenchyma tissue in
succulent A. victoria-reginae leaves (Singh et al., 2020) supports
the evolution of fructan accumulation as an adaptation of
Agavaceae to arid conditions. Consistent with these observations
(Morales-Hernandez et al., 2019) showed that Agave fructans
have a higher hydration shell in comparison to inulin and
have predicted bioprotectant properties equivalent to trehalose.
Suarez-Gonzalez et al., 2014 have shown that A. tequilana and
A. inaequidens respond to cold and elicitors by increased FT
expression and fructan production, consistent with roles in stress
tolerance mechanisms.

DISCUSSION AND PERSPECTIVES

Biochemical analysis has shown the presence of fructans in
all organs of different Agave species and the quantity and
complexity of these polymers varies depending on specific
tissue and plant age. The monocarpic, perennial life cycle, large
genome size and lack of molecular tools for Agave species have
hampered molecular/genetic analysis, however, transcriptome
data has allowed preliminary classification, and characterization
of cDNAs and enzymes involved in fructan metabolism. The
failure to identify 2 key enzymes may reflect low or transient
gene expression or multiple enzyme activities. Functional genetic

analysis in Agave is inefficient but heterologous systems such as
A. thaliana and P. pastoris are being exploited and development
of a genome sequence will resolve questions regarding isoforms,
gene structure and regulatory elements. Comparisons of fructan
metabolism on an evolutionary level between related taxa such
as Yucca and Aloe spp. and aspects of coevolution with nectar
feeding pollinators will also be feasible. Sub-cellular localization
of FT or FEH enzymes, detailed gene expression patterns and
aspects of fructan mobility must also be addressed to provide
insights to roles in signaling and stress tolerance.

Agaves represent an invaluable resource in relation to
development of agricultural systems on marginal land with
resilience to climate change. However, indiscriminate collection
of wild plants leads to decimation of natural populations and their
pollinators. Fructans are the basis for the commercial exploitation
of Agaves, therefore, understanding Agave fructan metabolism,
its multiple roles in the Agave life-cycle and in adaptation
to different habitats will facilitate strategies for exploitation
and conservation. The current challenge in Mexico is how to
exploit Agave fructans under a profitable, sustainable and socially
pertinent agricultural system.
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