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Abstract

Context Strategic placement of fuel treatments

across large landscapes is an important step to mitigate

the collective effects of fires interacting over broad

spatial and temporal extents. On landscapes where

highly invasive cheatgrass (Bromus tectorum) is

increasing fire activity, such an approach could help

maintain landscape resilience.

Objectives Our objectives are to 1) model and map

fire connectivity on a cheatgrass-invaded landscape, as

well as the centrality of large cheatgrass patches, in

order to inform a landscape fuel treatment (i.e., a

network of greenstrips); and 2) evaluate the modeled

greenstrip network based on changes to cheatgrass

patch centrality.

Methods Our analysis covers 485-km2 on the Kaibab

National Forest in Northern Arizona. We apply a

circuit-theoretic model of fire connectivity between all

pairs of large cheatgrass patches. Based on these

results, we calculate a measure of centrality for each

patch to inform fuel treatment placement. We evaluate

the modeled greenstrip network by comparing the pre-

and post-treatment centrality of each patch.

Results After modeling fire connectivity across the

landscape, we identify 25 of 68 large cheatgrass

patches with relatively high centrality. When we

simulate greenstrips around these focal patches, model

results suggest that they are effective in reducing the

centrality for at least 19 of the 25 patches.

Conclusions Fire connectivity models provide

robust network centrality measures, which can help

generate multiple, landscape fuel treatment alterna-

tives and facilitate on-the-ground decisions. The

extension of these methods is well suited for landscape

fuels management in other vegetation communities

and ecosystems.

Keywords Fire connectivity � Centrality �
Landscape fuels management � Cheatgrass � Invasive-
fire cycle � Circuit theory � Fire likelihood � Fuel
models

Introduction

In wildland fire and fuels management, landscape-

level treatments aim to fragment fuels across a large

landscape in order to lower the risk associated with

large and potentially severe wildfires (Agee et al.

2000). For a variety of vegetation types, this manage-

ment approach relies on fuel treatments at the local-
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level that modify individual fire behavior, which are

then ‘‘scaled-up’’ to modify the effects of fires

interacting on the landscape over multiple years

(Collins et al. 2010). For example, management

objectives at the landscape-level may be to limit

negative fire effects across a given landscape and time

period using a network of strategically located treat-

ments, each intended to create a fire-limiting canopy

(Ager et al. 2013). The placement of fuel treatments is

central to meeting these objectives, as some areas are

predictably more likely to experience negative fire

behavior and effects than others. Therefore, spatially

explicit methodologies that allow practitioners to

compare multiple fuel treatment placements, and that

can be transferred across ecosystems with variable

treatment objectives, are essential to landscape-level

fuels management (e.g., Parisien et al. 2007; Moghad-

das et al. 2010; Ager et al. 2011).

Across the arid regions of the Intermountain West,

cheatgrass (Bromus tectorum) is a non-native, highly

invasive annual grass that is facilitating changes in fire

behavior and increases in fire activity (Balch et al.

2013). As increased fire frequency reduces the vigor of

native vegetation and encourages further invasion,

cheatgrass can begin to dominate post-fire vegetation

communities (e.g., Whisenant 1989).When cheatgrass

contributes to fire frequencies that far exceed histor-

ical fire return intervals, the invasive/fire cycle has

established and it is ecologically and economically

very difficult to restore landscapes (D’Antonio and

Vitousek 1992; Brooks and Chambers 2011). Where

cheatgrass has reached sufficient abundance to create

new fuel conditions and alter fire behavior in localized

patches, there is a critical need to manage against more

widespread, homogeneous cheatgrass cover (Brooks

et al. 2004). Identifying strategic mitigation or

restoration activities requires a landscape-level per-

spective that considers the specific properties of

cheatgrass fuels and associated fire behavior.

An intrinsic property of cheatgrass that can help

drive changes in fire occurrence and seasonality is its

positive response to variation in climatic conditions

(Abatzoglou and Kolden 2011). Strong and ongoing

interannual variability in precipitation and increased

warming in arid climates will likely favor future

increases in cheatgrass cover, even at its higher

elevation ranges (Compagnoni and Adler 2014).

Coupled with warmer temperatures, years of above-

average winter and spring precipitation can lead to

increases in cheatgrass biomass, which, in turn, can

contribute to increased fire frequency in the following

season (Balch et al. 2013). In arid landscapes, where

native plant communities are typified by sparse cover,

a more continuous canopy can also increase the rate of

spread in some vegetation types, including pinyon-

juniper associations (Balch et al. 2013). Notably, the

fluctuations of biomass in arid landscapes can be

leveraged to model dynamic fire risk over extensive

areas by using, for example, the Normalized Differ-

ence Vegetation Index (NDVI) (Gray et al. 2014).

In the context of landscape-scale changes to fire

dynamics, fire managers and planners must consider

both the intrinsic properties of cheatgrass (e.g., its

responses to climate) and the extrinsic properties

introduced to native fuelbeds (e.g., its effect on fire

spread rates). For instance, interannual variation in

climate and fire hazard in cheatgrass-invaded land-

scapes will have a large influence on fire connectivity

from year to year, and predictions of where fire is more

likely to burn (Gray and Dickson 2015). Changing fire

connectivity also influences the relative importance of

large cheatgrass ‘‘patches’’ in facilitating fire spread

through the greater landscape network. In a network

analysis, centrality measures are important indicators

that expose the key nodes for transmitting a specific

flow process (e.g., fire spread) across the network

(Borgatti 2005). Within a network of cheatgrass

patches expected to increase the frequency and extent

of fire, centrality measures might be determined for

each patch, with the goal of determining its relative

contribution to large fire spread. Specifically,

betweenness centrality is a measure of the extent to

which a node lies on the path between all others and

facilitates flow across the whole network (see New-

man 2005). Closeness centrality is a measure of a

node’s effective distance to all other nodes (see

Brandes and Fleischer 2005). Centrality concepts

have been widely applied in the context of landscape

habitat connectivity (Bodin and Saura 2010; Theobald

et al. 2012; Carroll et al. 2012), but they have never

been applied in the context of landscape fire

connectivity.

For the purpose of mitigating fire connectivity in a

cheatgrass-invaded landscape, map-based predictions

of connectivity and centrality will be most useful if

they are based on an observed or forecasted distribu-

tion of high cheatgrass biomass, when the extrinsic

properties of cheatgrass will exert their greatest

Landscape Ecol

123



influence on native fire regimes (Pausas and Keeley

2014). Planted strips of fire-resistant vegetation, i.e.,

‘‘greenstrips,’’ have been used as a mitigation tool to

decrease overall flammability of a cheatgrass fuel

complex and interrupt fire connectivity under haz-

ardous conditions (Pellant 1989). In Arizona and

Nevada, a number of experimental greenstrips have

been planted to determine how best to combine

greenstripping, seed coating technologies, and tar-

geted grazing to control cheatgrass and fire in the

western US (L. Porensky, pers. comm.). However, a

landscape-level approach has never been applied to

prioritize greenstrip placement. The methods and

outcomes we present here can contribute to the

strategic and cost-effective design of greenstrip net-

works across extensive areas.

In this paper, we apply a new modeling approach

based on fire connectivity and centrality to guide

greenstrip placement on landscapes where cheatgrass

is causing abrupt changes to native ecosystems and fire

regimes (Pausas and Keeley 2014). Our primary goals

are to use the phenological and fuel-related properties

of cheatgrass that distinguish it from native vegetation

to model and map fire connectivity across a highly

invaded landscape in northern Arizona, and to demon-

strate how a greenstrip network can mitigate fire

dynamics. Our specific research objectives are to: (1)

map cheatgrass presence in a year of observed high

abundance in order to predict the enhanced rate of fire

spread across a heterogeneous landscape; (2) use these

results to estimate and map fire connectivity and

relative betweenness centrality among large patches of

cheatgrass; and (3) demonstrate how strategic place-

ment of greenstrips can then be modeled and evaluated

based on changes to relative betweenness and close-

ness centrality.

Methods

Study area

Our 485-km2 study area is within the North Kaibab

Ranger District on the Kaibab National Forest in

northern Arizona, on the western escarpment of the

Kaibab Plateau (Fig. 1). Elevations range between 900

and 2000 m. Normal winter/spring (December–May)

precipitation for the period from 1981 to 2010 ranged

between 112 and 31 mm, annual maximum

temperature ranged between 17 and 24 �C, and annual
minimum temperature ranged between 2 and 8 �C
(PRISM Climate Group, http://prism.nacse.org/

normals/). Dominant vegetation associations include

Colorado Plateau pinyon-juniper woodland and Inter-

Mountain Basins Big Sagebrush shrubland. In 1996,

the 21,500 ha Bridger Knoll fire burned 9000 ha of the

study area. This fire facilitated a large-scale invasion

by cheatgrass, and almost half of this area has re-

burned in subsequent years (see below), especially in

patches of vegetation with high cheatgrass density.

High fire activity in the past decade occurred in 2007

and 2012, in which approximately 4500 ha of the

study area burned.

Mapping cheatgrass and fire rate of spread

Precipitation on the west Kaibab Plateau in the winter

and spring of 2011 was above average and contributed

to increased cheatgrass germination and growth. To

detect cheatgrass based on its early season phenology,

we acquired Landsat TM scenes from the spring of

2011 (May 3, 2011) and the beginning of summer

2011 (June 20, 2011), from the U.S. Geological

Survey (USGS) Global Visualization Viewer (http://

glovis.usgs.gov, accessed July 2013). These acquisi-

tion dates coincided as closely as possible with peak

cheatgrass greenness in the spring and cheatgrass

senescence by early summer, and also provided scenes

that were completely cloud-free. We atmospherically

corrected all images and obtained surface reflectance

to derive NDVI values, using ENVI 4.7 software

(Exelis Visual Information Solutions, Boulder, Col-

orado, USA). In a geographic information system

(GIS; ArcGIS v10.1, Redlands, CA, USA), we created

a 30-m resolution raster of the seasonal difference in

NDVI (dNDVI), calculated as the spring NDVI minus

the summer NDVI. We therefore expected that values

increasingly greater than zero would indicate a more

likely presence of cheatgrass (Bradley and Mustard

2005). To determine the dNDVI values that best dis-

criminated the presence of cheatgrass in 2011, we

drew opportunistically on a cheatgrass cover dataset

that was collected in the early summers of 2005 and

2011, as part of a larger ecosystem assessment of the

Kaibab Plateau (Sisk et al. 2010). The sampling pro-

tocol for this assessment used a randomized design

stratified on soil and vegetation type, in circular plots

of 168 m2. Cheatgrass cover for the plot was estimated
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as the average cover taken across nine, one square-

meter subplots. Sixty-three of the plots were sampled

in 2005, and another 36 plots were sampled in 2011.

As was the case in 2010–2011, precipitation in the

winter and spring of 2004–2005 was also above

average.

With these 99 samples, we considered cover\1 %

to be cheatgrass ‘‘absence’’ and[1 % as ‘‘presence.’’

Sixty-two of the 99 plots contained a trace amount of

cheatgrass cover (\1 %), whereas only eight of the

plots had strictly zero cheatgrass cover. Classifying

presence and absence with a 1 % breakpoint allowed

for a more balanced sample size while retaining

sufficient samples in each class. This breakpoint for

defining presence and absence has also been used in

other locations to detect cheatgrass with Landsat

imagery (see Clinton et al. 2010). Using the Raster

(Hijmans and van Etten 2012) and ROCR (Sing et al.

2005) packages in R 2.15.1 (R Development Core

Team 2011), we extracted the dNDVI values at each

plot location and statistically related them to the

binary estimates of presence or absence. We calcu-

lated the area under the receiver operating character-

istic (ROC) curve (AUC) to provide a measure of how

well the dNDVI method discriminated between pres-

ence and absence (Hosmer and Lemeshow 2000). For

the purposes of classification, we determined the

dNDVI threshold value that maximized the true

positive rate of cheatgrass detection, while minimizing

the false positive rate. Since results based on this

decision could direct the use of limited management

resources, we chose to err on the side of a conservative

detection rate. We therefore assumed that a false

positive was twice as costly as a false negative. We

Fig. 1 Predicted cheatgrass

presence based on the

difference in Normalized

Difference Vegetation Index

(dNDVI) values between

spring and summer 2011.

Cheatgrass displays an

earlier green-up and

senescence from native

vegetation in the study area

that can be detected using

dNDVI thresholds
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calculated the ROC and used a cost function (https://

github.com/joyofdata/joyofdata-articles/blob/master/

roc-auc/calculate_roc.R) to help determine the opti-

mal dNDVI threshold value in this case (Pontius and

Parmentier 2014). Using the GIS, we reclassified

dNDVI to a binary raster, where values greater than

the threshold were estimated as presence, and values

less than the threshold were estimated as absence.

To account for the increased rate of spread caused

by cheatgrass fuels, we used the presence/absence

cheatgrass map to update standard fire behavior fuel

models (FBFM; Scott and Burgan 2005) based on

observed fire spread in 2012.We looked specifically at

three large fires that occurred in our study area in 2012

(Table 1), since detailed fire growth and suppression

information was available for these fires from Incident

Status Summary (IC-209) reports (http://famtest.

nwcg.gov/fam-web/, accessed October 2013) and

from the Incident Information System (http://www.

inciweb.nwcg.gov, accessed October 2013). We also

know from IC-209 reports that these fires burned

through cheatgrass fuels, in native brush and pinyon-

juniper communities. The FBFM and topography data

(30-m resolution) were obtained from the LANDFIRE

project (http://www.landfire.gov, accessed October

2013). The FBFM included characteristics of surface

and canopy fuels, in formats required by fire growth

and behavior simulation software, including FAR-

SITE (Finney 2004) and FLAMMAP (Finney 2006).

FARSITE simulates fire growth under hourly weather

conditions and can be used to reconstruct historical fire

growth for fuel model calibration (Stratton 2006). In

addition to the FBFM and topography data, we

parameterized FARSITE with ignition data from the

Kaibab National Forest (http://www.fs.usda.gov/

detail/r3/landmanagement/gis/?cid=stelprdb5209305,

accessed September 2013), weather and fuel moisture

data from the Gunsight RAWS weather station (http://

www.raws.dri.edu/, accessed October 2013), and fire

suppression information from the Incident Informa-

tion System.We assumed burn periods of 10:00–18:00

and simulated durations that coincided with fire pro-

gression data from the IC-209 reports. We simulated

the three fires under real-time weather to see how well

the ‘‘off-the-shelf’’ FBFM approximated fuels that

were actually affecting fire spread rate. IC-209 reports

indicated that a low-load, dry climate grass was the

primary carrier of fire. Therefore, we used the GIS to

Table 1 Incident summary information for three large fires that were simulated in FARSITE and used to calibrate cheatgrass fuel

models on the west side of the Kaibab Plateau

Parameter Fire name

EAST TANK JUMPUP

Fire duration 08/09/12 10:00 to 08/10/12

15:00

07/21/12 12:30 to 07/22/12

18:00

08/13/12 14:55 to 08/14/12

14:00

Fire size (ha) 790 1030 145

Dominant wind directions SW and SE E and SW S

Peak wind gusts (km/h) 10 13 24

Maximum temperature (�C) 38 36 34

Minimum relative humidity

(%)

11 13 17

Initial 1-h fuel moisture (FM) 3 5 3

Initial 10-h FM 4 5 3

Initial 100-h FM 7 7 6

Initial live herbaceous FM 36 34 31

Initial live woody FM 82 65 77

All three fires burned through dense stands of cheatgrass, interspersed with native shrub, grasses, and pinyon-juniper vegetation.

Incident reports indicated that the fires were at least 80 % contained and had reached 90 % of their final fire size by the time indicated

on the second day. Thus, we assumed that suppression activities outweighed ambient environmental influences on fire growth and we

ended simulations at this time
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reclassify cheatgrass presence as a GR2 fuel model

across the whole study extent. Although shrubs and

trees may be present, grass is the primary carrier of fire

in the GR2 fuel model (Scott and Burgan 2005).

Leaving all other fuel models unchanged, we re-ran

fire simulations in FARSITE to see how well the

updated FBFM approximated the fuels present in

2011.

With the updated fuels map, we then calculated

potential rate of fire spread across the whole study

extent. For this step, we used FLAMMAP (v.5), which

simulates landscape fire behavior based on spatially

varying winds (given an initial direction and speed),

topography, and fuel characteristics. FLAMMAP

outputs are isolated representations of the potential

fire behavior at each landscape grid cell, and can be

used to effectively compare relative rates of spread

across the landscape, without actually simulating fire

spread (Finney 2006). In addition to the updated fuels

map and topography data, we parameterized FLAM-

MAP with wind and fuel moisture values. Diurnal

wind summaries for June, July and August showed

that winds were most frequently out of the

south/southwest, and observed wind speeds reached

30 kmh. To estimate fire spread rates under high wind

conditions, we used 180� winds at 30 kmh. Similarly,

to estimate fire spread in low fuel moisture conditions,

we used fuel moistures of the lowest 97th percentile

recorded at the GUNSIGHT station. These were 3, 3,

4, 30, and 51 % for 1, 10, 100 h, live herbaceous, and

live woody fuels, respectively. The final FLAMMAP

output was a 30-m resolution raster dataset that

estimated the potential rate of spread at each grid

cell, taking into account fuels, weather, and topogra-

phy, but not the influences of neighboring pixels.

Circuit theory models integrated the FLAMMAP

output to simulate fire spread and estimate fire

likelihood across the landscape (see below).

Fire connectivity modeling and greenstrip

placement

In addition to using the cheatgrass presence/absence

map to estimate rates of fire spread across the

landscape, we used the map to identify relatively

large patches of cheatgrass presence. We used the

GIS to determine if cheatgrass presence (vs.

absence) was dominant in a 10-ha radius. We then

retained patches [10 ha, because the small

percentage of fires in our study area that have

reached this size have often grown much larger. For

instance, since 1930 only 12 % of recorded fires

(n = 173) have reached 10 ha, and of these, 50 %

grew to over 50 ha. To estimate the connectivity of

fire between cheatgrass patches and under enhanced

rates of spread, we used a circuit theoretic model of

landscape connectivity (McRae et al. 2008). In order

to estimate the likelihood of fire spread as a result of

dynamic interactions with the environment, the

landscape is modeled as a circuit network of

connected conductors (Gray and Dickson 2015). In

contrast to deterministic fire spread algorithms that

have the rate of spread at their core (e.g., Finney

2002), circuit theory estimates the highly stochastic

nature of fire spread. We used the FLAMMAP rate

of spread estimates as a proxy for landscape

conductance (i.e., the ability of the landscape to

facilitate the spread of fire), such that each cell in

our raster map was represented in the circuit model

as a node connected by conductors to its eight

nearest neighbors. Current (or analogously, fire)

spreads through the circuit network in proportion to

the eight conductance values at each node. The

resulting current density at each node is equivalent

to the net, directionless likelihood that fire will pass

through that node, when spreading from a source to

a target (i.e., the fire likelihood; Gray and Dickson

2015).

We implemented our fire connectivity model using

Circuitscape software (v3.5.8; www.circuitsape.org).

In order to estimate connectivity between all possible

pairs of cheatgrass patches (i.e., ‘‘pairwise connec-

tivity,’’ see McRae et al. 2008), we initialized a source

patch with 1 A of current and iteratively designated

every other patch as the target. By assuming that fires

start only within cheatgrass patches, we ignored other

factors that potentially contribute to large fire ignition

(e.g., lightning density and proximity to roads).

However, across arid regions of the Western US, large

fires have historically been more likely to start in

cheatgrass-invaded areas compared to other, non-in-

vaded land cover types (Balch et al. 2013). Therefore,

this assumption was grounded in our objective to

estimate the increased fire connectivity caused by

cheatgrass fuels. From the pairwise model imple-

mentation, we retained only the maximum current

density map, which tends to better reflect the current

density between patches in relatively close proximity
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(Dickson et al. 2013). This decision was intended to

identify the most likely spread pathways between

patches that were closer together.

In addition to identifying intermediate areas on the

landscape that have a high likelihood of burning, the

pairwise calculation also allowed us to derive two

centrality measures for cheatgrass patches. Drawing

on the definitions of centrality from network theory,

betweenness centrality in this context measures the

extent to which a patch facilitates the spread of fire

across the whole landscape, and closeness centrality

measures the patch’s effective distance to all other

patches. We determined relative betweenness patch

centrality by summing the cumulative current density

(i.e., resulting from all pairwise calculations) within

each patch, normalized by area as an area-weighted

measure of centrality (Dickson et al. 2013). We

determined relative closeness centrality for each patch

by taking the mean effective distance to all other

patches. In circuit networks, distance is measured by

the ‘‘effective conductance,’’ which accounts for the

cumulative conductance of all possible flow paths

between patch pairs, and reflects the ability of fire to

spread between those pairs (McRae et al. 2008). We

used only the betweenness centrality measure to in-

form where on the landscape to simulate fuel

treatments, whereas we used the betweenness and

closeness measures to evaluate the modeled, post-

treatment outputs.

Using the maximum current density map and the

relative betweenness centrality of patches, we focused

in on three areas of the landscape that would warrant

active mitigation through the placement of greenstrips.

The area-weighted betweenness centrality of patches

was a primary indicator of where to focus these efforts,

whereas the identification of ‘‘pinch-points’’ between

focal patches was a secondary measure (McRae et al.

2008). This way, greenstrips would be located to most

effectively interfere with fire connectivity between

patches with a relatively high likelihood of contribut-

ing to fire spread. To make it easier to identify likely

pinch-points, we reclassified the maximum current

density map into 10 quantiles and focused primarily on

the 80th percentile of estimates. We used a roads layer

from the Kaibab National Forest to help locate more

strategic placement of greenstrips that might buffer or

adjoin existing roads.We used a 10-m elevation model

to locate greenstrips on ridgelines wherever possible,

and also considered placement in relation to dominant

winds out of the south and southwest.We assumed that

the short, sparse dry climate grass FBFM (GR1) could

represent the fuel targets achieved by a greenstripping

treatment, since spread rate and flame length are low

compared to other GR models (Scott and Burgan

2005). Therefore, we converted the FBFM in these

greenstrips to GR1 and re-implemented our connec-

tivity analysis, leaving all other model parameters

unchanged. In all cases, a greenstrip was one grid cell

in width (i.e., 30 m) simply to demonstrate the

resultant changes in centrality by converting a mini-

mal area. This is also consistent with the width of

greenstrips that have been implemented in the past

(Pellant 1992). We used these simple guidelines to

demonstrate a single application of a greenstrip

network. Other specific design considerations of

greenstrips, as well as resource constraints to other-

wise guide greenstrip size and location, were beyond

the scope of our research. To evaluate resultant

changes in centrality, we looked at the difference

between the pre- and post-treatment relative between-

ness and closeness centralities for each focal patch.

Results

Cheatgrass presence and fire rate of spread

The ROC curve and associated cost function identified

an optimal dNDVI threshold value of 0.037 (Fig. 2).

Therefore, valuesC0.037 were classified as cheatgrass

presence in the cheatgrass distribution map, and values

\0.037 were classified as absence (Fig. 1). This

threshold value resulted in a 65 % true positive rate

of cheatgrass detection, a 15 % rate of false positive

detection, and an AUC of 0.74. Because we did not

withhold any data for evaluation purposes, our

estimates of classification accuracy and AUC are

likely inflated.

FARSITE model runs resulted in hectares where

the simulation agreed with the actual fire perimeter

(i.e., ‘‘hits’’), hectares where the simulation failed to

burn inside of the actual fire perimeter (i.e., ‘‘misses’’),

and hectares where the simulation burned outside of

the actual fire perimeter (i.e., ‘‘false alarms’’). Using

an ‘‘off-the-shelf’’ FBFM, two of the simulations

under- predicted area burned by at least four times the

actual amount, and one simulation only slightly

overpredicted the actual area burned. The Jumpup
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Fire resulted in 81 hits, 67 misses, and 14 false alarms;

the Tank fire resulted in 814 hits, 217 misses, and 343

false alarms; and the East fire resulted in 278 hits,

515 misses, and 49 false alarms (Fig. 3). In all three of

these simulations, FBFM were predominantly classi-

fied as the GR1 model. Using the updated FBFM,

which accounted for a higher and more continuous

fuel load where cheatgrass was present, simulations

were more spatially consistent with observed fire

perimeters but consistently overpredicted the area

burned by at least six times the actual amount. The

Jumpup fire resulted in 141 hits, 6 misses, and 53 false

alarms; the Tank fire resulted in 1,010 hits, 21 misses,

and 374 false alarms; and the East fire resulted in 753

hits, 40 misses and 263 false alarms (Fig. 3). In these

simulations, fire progression in day one for all fires

was especially consistent with actual fire perimeters.

The potential rate of spread estimated with the

updated fuels map (i.e., the landscape conductance

estimated with FLAMMAP) ranged between zero

(FBFM NB9) and 185 m/min (FBFM SH5; Scott and

Burgan 2005) across the study area. Mean spread rate

for the GR2 model was 36 m/min (SD = 10). Other

dominant fuel models in the study area were GS1

(0.3 m/min, SD = 2), GS2 (19,10), NB9 (0,0), GR1

(3,4), and SH1 (10,2) (Scott and Burgan 2005). We

identified 68 unique cheatgrass patches that ranged in

size from 10 ha to 9600 ha (mean = 185 ha,

SD = 1,153 ha). The largest contiguous patch encom-

passed part of the fire perimeter of the 1996 Bridger-

Knoll fire that re-burned in the 2007 Slide fire. Other

patches coincided with past fire perimeters of the

Faver fire (2012), Elbow fire (2012), Ranger fire

(2012), East fire (2012), Tank fire (2012), Jumpup fire

(2012), and Snake fire (2005).

Pre and post-treatment fire connectivity

The map of relative betweenness patch centrality

(Fig. 4) exposed focal areas of cheatgrass cover that

were most important for facilitating fire spread when

all patch pairs were iteratively connected. The area-

weighted estimates revealed patches that were at a

higher likelihood of burning than would be expected

by size alone, while more likely contributing to the

spread of fire across the landscape. Patches with the

highest relative betweenness centrality were in the

southern part of the study area, around Jumpup Point,

and on the plateaus north and south of Big Sowats

Canyon. These were all of intermediate patch size

(*100 ha), whereas the largest contiguous patch

covering the Slide and Bridger Knoll fires (9600 ha)

suggested only intermediate betweenness centrality.

Our estimates and map of maximum fire likelihood

between patches highlighted possible pinch-points for

fire connectivity among all patch pairs, due to the

underlying influences of fuels, topography, and winds

(Fig. 5). To model the placement of greenstrips, we

focused only on those pinch points that emerged

among 25 patches of highest relative betweenness

centrality in the southern portion of the study area (see

Fig. 4). Around Jumpup Point, we located 21 potential

greenstrips around 14 cheatgrass patches (Fig. 6d).

North of Big Sowats Canyon, we located 3 greenstrips

around 5 cheatgrass patches (Fig. 6c), and we located

8 greenstrips around 6 cheatgrass patches to the south

of Big Sowats Canyon (Fig. 6b). The greenstrips

encompassed a total area of 170 ha, or 0.3 % of the

landscape. When fuels in these greenstrips were

replaced with the GR1 FBFM, 19 of the 25 high

centrality patches decreased in relative betweenness

centrality (Fig. 7), and relative closeness centrality

decreased or remained unchanged for all patches in the

study area (Fig. 8).

Fig. 2 ROC curve showing points that correspond to all

possible threshold values of the dNDVI. Coloring of the points

illustrate the associated cost (green low cost, red high cost) of

the corresponding threshold value, and the dashed line

represents the chosen threshold value (0.037) that simultane-

ously optimized the FPR and TPR. (Color figure online)
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Discussion

The strategic placement of fuel treatments to reduce

fire risk across forested and non-forested ecosystems is

an important step towards landscape fuels manage-

ment and the mitigation of negative fire behavior and

effects. Particularly in arid shrublands and woodlands,

increased continuity of cheatgrass cover can inhibit

the natural re-seeding of native vegetation after fire

and lead to even more continuous cheatgrass fuelbeds

in a post-fire landscape (Whisenant 1989). Once

cheatgrass patchiness is virtually eliminated, the

invasive/fire cycle leads to more frequent and larger

fires and allows cheatgrass to dominate the landscape.

Like many shrublands and woodlands throughout the

western US, future climatic conditions in our study

area are likely to remain suitable for cheatgrass

invasion, making restoration efforts extremely diffi-

cult (Bradley 2009). Therefore, a foremost fire man-

agement objective for a cheatgrass-invaded landscape

should be to maintain patchiness. This can be achieved

with the strategic placement of greenstrips that slow or

Fig. 3 FARSITE simulations for the three fires depicted in

Table 1. aAll fire simulations using ‘off-the-shelf’ standard Fire

Behavior Fuel Models (FBFM; Scott and Burgan 2005);

b Simulation of the Jumpup fire using a low load, dry climate

grass fuel model for areas with predicted cheatgrass presence;

c Simulation of the Tank fire using fire a low load, dry climate

grass fuel model for areas with predicted cheatgrass presence;

d Simulation of the East fire using a low load, dry climate grass

fuel model for areas with predicted cheatgrass presence.

Simulations with the updated fuels map resulted in more hits

and less misses for all fires, but also more false alarms
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stop fire spread between cheatgrass patches and into

intact native vegetation.

With limited resources to dedicate across large

landscapes, it is necessary to understand where

mitigation projects will be most ecologically and

economically effective. Our landscape-scale models

and maps of fire connectivity directly address this

issue. To begin, we used cheatgrass cover data that

was collected in the field to relate seasonal differences

in NDVI values to cheatgrass presence. Based on

comparison with the field data, our map was a

conservative estimate of cheatgrass presence (i.e., it

resulted in a low true positive rate). From an economic

standpoint, maintaining a low false positive rate will

help direct limited resources to locations with more

certainty. From an ecological standpoint, we would

expect false negatives to have lower actual cover than

true positives, since the subtle difference between zero

and 1 % cover in remotely sensed imagery is not easily

discernible. Here we were also more willing to accept

a lower false positive rate at the cost of a higher false

negative rate.

Without accounting for the predicted cheatgrass

presence in fuel models, two out of three fire

simulations underpredicted actual fire spread, sug-

gesting that cheatgrass cover was indeed missing from

these models. In the simulation where fire spread was

slightly overpredicted, the number of misses was twice

the number of hits, indicating poor spatial overlap with

the actual fire perimeter and, again, a misspecification

of the fuels map. After replacing areas of predicted

cheatgrass presence in 2011 with a dry climate grass

fuel model, simulations of fires that occurred in 2011

closely replicated the observed fire perimeters, despite

Fig. 4 Cheatgrass patches

and associated area-

weighted relative

betweenness centrality

estimates across the west

side of the Kaibab Plateau.

The yellow and red colored

cheatgrass patches were

predicted to be the most

important patches for

facilitating fire spread, while

black and dark blue patches

were predicted to be the

least important. (Color

figure online)
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some overpredicting of the area burned. This makes

sense considering we replaced cells with[1 % cover

of cheatgrass with a uniform fuel model in which fuel

composition parameters, including fuel loading,

remain fixed across space. Indeed, a model of absolute

fire behavior should be interpreted with caution

because the true variability of weather, fuels, and

topography is likely manifest at a finer spatial grain

size. However, when results are used to compare

relative fire behavior under a common weather

scenario, they provide an excellent basis to analyze

connectivity under alternative fuel conditions and

treatments (Fulé et al. 2001).

Ideal targets for mitigation would be those cheat-

grass patches that are expected to contribute most to

fire connectivity between other patches and across the

landscape. We used robust measures of centrality to

rank cheatgrass patches based on their relative

importance in facilitating fire spread between all patch

pairs. The largest patch, which included the burned

extent of the 1996 Bridger-Knoll fire, should have

resulted in the greatest cumulative fire likelihood.

However, many smaller patches in the southern

portion of the study area each revealed a larger area-

weighted betweenness centrality. Thus, we chose to

focus on these areas to illustrate how the existing

Fig. 5 Highest likelihood

fire spread pathways

between cheatgrass patches

(yellow high likelihood,

black low likelihood) across

the west side of the Kaibab

Plateau. Fire spread

pathways were derived by

modeling the connectivity

between all possible pairs of

cheatgrass patches using the

program Circuitscape

(v3.5.8; www.circuitsape.

org). ‘Pinch-points’ are

located along the narrow

paths of highest fire likeli-

hood. (Color figure online)
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patchiness might be maintained through the restora-

tion of fire spread and behavior. A more detailed

analysis of fire connectivity and fuel treatment place-

ment would likely be warranted within the Bridger-

Knoll patch, due to the continuous extent of cheatgrass

invasion in that area. Indeed, our estimates of relative

centrality are based on values of current density that

could be readily used to explore within-patch patterns

of fire connectivity.

Models of fire behavior provided a basis to

examine the relative change in connectivity under a

hypothetical arrangement of greenstrips on our focal

landscape. Since all parameters except fuel type

remained the same between our two connectivity

scenarios, it was simple to compare the change in

relative centrality by looking at differences in

current density and effective conductance. With

one such network, in which only 0.3 % of the

landscape was converted to a low load dry climate

grass model, our results showed an overall decrease

in relative betweenness centrality among cheatgrass

patches. Our results also showed a decrease in the

relative closeness centrality for all but one cheat-

grass patch, indicating that the network of green-

strips decreased the ability of fire to spread between

patch pairs.

Fig. 6 Location of

potential greenstrips in three

different areas on the west

side of the Kaibab Plateau.

Greenstrip placement was

determined by the relative

area-weighted betweenness

centrality of patches and the

presence of predicted

‘pinch-points’ between

focal patches
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While the results presented here show the poten-

tial for mitigation planning in our study area, the

real promise of our approach lies in generating

multiple management alternatives and facilitating

decisions in light of costs, benefits, and other

management objectives. This would greatly improve

upon traditionally more ad hoc approaches to place

greenstrips across a cheatgrass-invaded landscape

(Pellant 1992). A few such decision support models

have been applied in forested ecosystems (e.g.,

Parisien et al. 2007; Wei et al. 2008; Ager et al.

2013). For example, the Landscape Treatment

Designer is a model for stand-level fuel treatments,

and works with initial fire behavior thresholds and

budget constraints to optimize the outcome of

multiple treatments (Ager et al. 2013). The aggre-

gate of treated and untreated stands aims to create a

more fire-resilient landscape over time. This model

deals with stand-level fuel treatments, but a similar

optimization logic could easily be applied to our

connectivity models for locating fuelbreaks. The

process would be begin by setting management

objectives and budget constraints, and follow with

iterative application of the connectivity model to

produce an optimized outcome of post-treatment

centrality metrics. This approach would also be

complementary to a broader fuels management

strategy that integrates stand-level treatments (Agee

et al. 2000). Another decision support model for the

placement of fuelbreaks has been applied in Cana-

dian boreal forests, and is premised on reducing the

overall burn probability across a landscape (Parisien

et al. 2007). The model takes into account the

baseline burn probability as well as landscape

Fig. 7 Cheatgrass patches

and associated differences in

relative area-weighted

betweenness centrality

across the west side of the

Kaibab Plateau. Differences

were taken between the pre-

and post-treatment scenarios

of the depicted greenstrip

network
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features to prioritize fuelbreak placement, but lacks

concise decision parameters to optimize landscape-

level treatments.

The extension of our methods is also well suited for

landscape fuels management in forested communities,

for instance to mitigate where land-use and climate

patterns have contributed to increases in large, severe

wildfires (Westerling et al. 2006; Miller et al. 2008). In

a connectivity model, the highest risk ‘‘patches’’ on

the landscape would be those areas where large fires

have a high likelihood of igniting and also facilitating

the spread of fire in the larger landscape network.

From a fire behavior perspective, fuel treatment

placement can take into account the highest likelihood

spread pathways around these patches and also the

potential for unwanted fire behavior or effects. The

flexible integration of fire connectivity models into

landscape-scale vegetation and fire management can

facilitate coordinated, science-based actions on-the-

ground. Such efforts will be necessary to mitigate the

negative, fire-related impacts that face landscapes

globally.

Conclusion

Centrality metrics have played an important role in

exposing focal points of flow for many ecological

processes, primarily for the purpose of restoring

connectivity across fragmented landscapes. In the

context of fire and invasive plant management, our

results are the first to show how they may also be used

to keep a fragmented and heterogeneous landscape

intact. Betweenness centrality metrics drew attention

Fig. 8 Cheatgrass patches

and associated differences in

relative closeness centrality

across the west side of the

Kaibab Plateau. Differences

were taken between the pre-

and post-treatment scenarios

of the depicted greenstrip

network
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to focal areas on the landscape that would maintain

high fire connectivity across a cheatgrass-invaded

landscape. Subsequently, we evaluated the effective-

ness of a potential greenstrip network by modeling the

change in both betweenness and closeness centrality

of those focal areas. The novel application of these

metrics revealed the potential for diminished inva-

sion/fire risk across the landscape, by focusing con-

servative mitigation action only around focal

cheatgrass patches. With the ability to model fire

connectivity across large landscapes, we see a great

opening for centrality metrics to expose high-risk

areas that can guide ecologically and economically

efficient landscape fuels management.
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